Empirical Mode Decomposition¹ for High Density, Dipole-Confined Plasmas

B.A. Grierson Columbia University 9.18.2006

Dipole Density Regimes

- A dipole-confined plasma has two distinct density regimes, namely low and high density.
- High Density: p_n≥10^{-5.3} Torr
- The High Density regime displays low frequency (3-8kHz) turbulence.

CTX Dipole Bmax~2kG, Bwall~50G LTerella =20cm LChamber =70cm

1kW ECRH @2.45GHz ECRH Resonance at L=27cm

Basic Parameters

Second gas puff causes: massive increase in I_{sat} drop of x-rays increase of photo-emission

Profiles

drift-resonant with ω_d (T_e ~10-12eV)

 $\Phi_f(L) = 0.01L^{-7.5} + 6.6$

High Density Transition Large, m=1 Fluctuations Rigid Rotating ExB (Φ_f ~1/L)

Turbulent Time Series

A turbulent time series displays intermittency.

- A turbulent time series displays a power-law spectra.
- Most data is non-stationary (not strictly periodic), and frequency can change inside of a characteristic period.
- These are problems for Fourier Methods which generally require time series to be:

 - ⊘ b) Stationary.

Hilbert Spectrum¹

 Hilbert Transform given by:
 $Y(t) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{X(t')}{t - t'} dt'$ $Z(t) = X(t) + iY(t) = a(t)e^{i\theta(t)}$ Sorm Analytic Function: So Instantaneous Frequency: $\theta(t) = \arctan \left| \frac{Y(t)}{X(t)} \right| \quad \omega(t) = \frac{d\theta(t)}{dt}$ Instantaneous Amplitude: $a(t) = \sqrt{X(t)^2 + Y(t)^2}$ The phase must be `unwrapped' before differentiating.

IMFs¹

In order to apply the Hilbert Transform, the time series must be of the class `Intrinsic Mode Functions'.

Envelope functions symmetric about the local zero.

- No positive minima or negative maxima.
- Same number of zero crossings as extrama, within one.

Formed by `sifting the time series'

Sifting Process^{1,2}

- The time series, S₀(t) is to be sifted into many IMFs.
- One spline is fit to all maxima S_{max}(t), another to all minima S_{min}(t), then the average is taken m₁₁=(S_{max}(t)+S_{min}(t))/2.
- Subtract spline average from the original signal S₀(t)-m₁₁(t)=h₁₁(t) and repeat until h_{1k}=h_{1(k-1)}, where k is the mean spline subtraction iterate. Then c₁(t)=h_{1k}, the first IMF.

 \odot S₀(t)-c₁(t)=S₁(t), and repeat process on S₁.

Sifting Isat Data

 The data is sorted into functions with intrinsic time scales that are inherent to the data.

•Each IMF has a frequency which is approximately half the previous IMF

Instantaneous Phase

The instantaneous phase for each IMF. The frequency regimes are well separated. A linear fit gives the average frequency.

Hilbert Spectrum

Statistics

While the Hilbert spectrum is qualitative,
Certain Integral Quantities are quantitative.

Instantaneous Energy

$$IE(t) = \int_0^{\omega_N} H^2(t,\omega) d\omega$$

Mean Marginal Spectrum Fourier-like spectrum $h(\omega) = \frac{1}{T} \int_0^T H(t, \omega) dt$

IE and Spectrum

 Instantaneous Energy also records the highly energetic, intermittent bursts of low frequency activity
Spectrum also

Spectrum also
displays a power-law
scaling, similar to FFT.

Summary

- A novel technique has been implemented to study the fluctuations in a turbulent plasma.
- The time series displays intermittent burst of activity, and non-stationary fluctuations.
- The method decomposed a turbulent signal into a few mode functions at intrinsic fluctuation time scales.
- The 4-8kHz frequency range contains most of the power and is most strongly correlated.

¹ Proc. R. Soc. Lond. A (1998) **454**, 903–995 ² Phys. Plasmas **13**, 082507 (2006)